If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-7n-17=0
a = 1; b = -7; c = -17;
Δ = b2-4ac
Δ = -72-4·1·(-17)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3\sqrt{13}}{2*1}=\frac{7-3\sqrt{13}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3\sqrt{13}}{2*1}=\frac{7+3\sqrt{13}}{2} $
| 3(x-9)-(x-3)=4(2x-5)-3(3x-3) | | n^2-7n+3=0 | | 20+x=16+36 | | 4(x-3)=2(2x-5) | | 32x+243=36(3)x | | 7x+2x+5x=x | | 0.7943x+x=0.1 | | 9y+11=5y+35 | | 7m-13=52 | | 4-y-13=19 | | 7x+6=2(4x+3)-x | | 11x+40=7x+16 | | 54-4x=12x-10x | | 8.1/100=x/41.5 | | 9-m=3m-7 | | x(x+1)=0.01 | | 8+5k=-7 | | 8-k=-6k-7 | | 2-x=60 | | X^4+2y^2=1 | | G(x)=8-4x3+2x8 | | 16=7y-1 | | 8+2m=-10 | | 85+-96=x | | X+83x=3 | | 8s=3s+500 | | 2x^2+x+64=0 | | 8z-1=63 | | 3v+4=6v+5 | | 3(2x-5)=9-x/3 | | 3v+4=6v+2 | | 3(x-5)-(8+2x)=4(x-7)+2x |